PANEL: THE CURRENT STATE OF RESEARCH PROF MARTIN COLE

SESSION SPONSORED BY

Fresh Produce Safety

Martin Cole | Director 11 August 2014

FOOD AND NUTRITION FLAGSHIP

www.csiro.au

Healthier products also need to be safe US-Fresh Produce: Nutrition vs Food Safety

- Recent fresh produce food safety issues in US
 - August, 2006 E. coli in bagged spinach 204 illnesses, in 26 states, three deaths.
 - **September 2006** Salmonella in tomatoes sickened 183 illnesses in 21 states.
 - **December 2006:** Iceberg lettuce contaminated with *E. coli* fast food restaurants, 152 illnesses.
 - August 2007: Nationwide recall of fresh spinach due to suspected Salmonella contamination Includes over 300 separate commodities
- Food safety often relies on prevention of contamination, the weakest form of hazard control
 - Control of pathogen growth is insufficient
 - No practical "kill" step currently available
- Leafy greens 5 million bags a day, 18 billion,

Spinach Outbreak 2006

- 204 people from 26 states infected with outbreak strain
- E. coli O157: H7 Isolated from 13 packages of DOLE spinach;
- "DNA fingerprints" of all 13 matched the outbreak strain;
- Eleven packages with lot codes consistent with a single facility on a single day
- 102 (51%) hospitalized;
- 31 (16%) developed hemolytic uremic syndrome (HUS)
- Three confirmed deaths
- \$170 million in lost sales, millions more in settlements

E.Coli Outbreak in Germany

- •Traced to Bean sprouts organic farm in Northern Germany
- •Causative Agent, E.coli 0104:H4
- •Over 4000 cases across 16 countries, most in Germany
- •909 haemolytic uraemic syndrome (HUS)
- •52 deaths
- Most costly ever outbreak
- •Business cost so far >210 million Euros
- •Medical costs (based on US estimates likely to be \$3.5 billion)
- •Likely contamination source, Fenugreek seeds from Egypt

 $http://www.safefood.qld.gov.au/images/stories/news_events/hot_topics/fenugreek\%20 sprouts.jpg$

http://www.smartdraw.com/specials/images/examples/ecoli-outbreak-germany-map.png

http://www.euro.who.int/en/what-we-do/health-topics/emergencies/international-health-regulations/news/news/2011/07/outbreaks-of-e.-coli-o104h4-infection-update-29

10.1056/nejmoa1106483 nejm.org

ny

Making it Personal

Andrea Heinze
An energetic sporty 29 year Old

http://www.welt.de/vermischtes/weltgeschehen/article13467030/Ander-5800-Euro-Ampulle-haengt-die-Hoffnung.html

- •Eat bean sprouts 19th May
- •Next day went to emergency room with stomach pains
- Developed HUS
- •4 weeks in intensive care
- •Now faces 4 hours dialysis, 3 times a week

Managing the 'Food Safety Cliff'

Food Safety Objectives

$$H_0 + \Sigma I + \Sigma R \leq FSO$$

- FSO = food safety objective
- H_o = initial level of the hazard
- ΣI = total increase in hazard, through growth or contamination
- ΣR = total death (reduction of hazard; negative number)

Risk-based use of preventative controls in the production chain of fresh produce

Production & Primary Handling

Minimizing initial levels

Water management
Choice of fertilizer
Sanitation of equipment
Rapid cooling
Hygiene of personnel
Monitoring

Processing & Packaging

Reducing levels

Processing & Washing steps Environmental surveillance Monitoring

Distribution & Shelf-life

Minimizing an increase in levels

Minimum Standards

Temperature management Choice of storage atmosphere Shelf-life Monitoring

Good Agricultural Practice (GAPs)
Good Manufacturing Practice (GMPs)
Hazard Analysis Critical Control (HACCP)
Performance Standards
Guidelines/Regulations

Setting Performance and Process Criteria

$$\mathbf{H_0} - \sum \mathbf{R} + \sum \mathbf{I} < \mathbf{FSO}$$

$$0.1 - \sum R + 2.7 < 2$$

$$\sum R < 0.8 \log CFU/g$$
 Performance Criterion

120 ppm sodium hypochlorite or POAA/ H_2O_2 , washing time of 2 Process minutes provides > 0.8 log reduction Criterion

BSL-3 Produce Washing Line at the National Center for Food Safety Technology

Chlorine + HPU (TW14359)

Alvin Lee, NCFST

Screening Seeds Used for Sprout Production: Industry Practice

- Six-step procedure developed by ISS and Jonathan's Sprouts
 - Seed sampling
 - 25 g subsamples from each bag . At least 3 kg per seed lot
 - Seed inspection
 - Sprout growing
 - Follow normal sprouting procedures
 - Spent irrigation water sampling
 - 48 h
 - Enrichment of sampled water
 - Pathogen testing
- Prevented at least one potential outbreak of *E.coli* 0157:H7 and prevented shipment of contaminated seeds to sprouters.

Illustrative Example: Effect of Testing on Required Reduction

Log cfu/g

Communicating Key Control Measures

Relative importance		Useful testing							
Critical in- gredients	Low	Initial contamination is highly dependent on implementation of go agricultural practices (see Sect. 12.2).					goo	d	
In-process	High	Monitoring antimicrobial concentration is recommended to prevent cross contamination via wash water, flume water, etc.							
	Low	Periodic microbiological testing of paired (i.e., before and after) pro- duce samples may be useful to assess effectiveness of these controls.							
Processing environmen		Periodic testing of food contact surfaces and processing environments are recommended to verify adequacy of cleaning and sanitization protocols. Potential assays include aerobic colony counts and <i>E. coli</i> .							
		Consider environmental testing for Salmonella in environments with a history of issues with birds or vermin.							
		Consider environmental testing for <i>Listeria</i> spp. or <i>L. monocytogenes</i> for refrigerated fresh-cut vegetables when growth may occur within usable shelf life.							
Shelf life	Low	Where shelf life of fresh-cut vegetables is limited by microbiological activity, validate shelf life after major change in process technologies. Periodic verification through microbiological analysis for spoilage species may be beneficial for such products.							
End product Medium		Routine testing is not recommended but periodic testing for specific in- dicators using internal standard or those below may be useful to verify process control and trend analysis.							
		1	,					g pla	
		Product	Microorganism	Analytica method ^a			c	ts/g* m	M
		Fresh-cut vegetables	E coli	ISO 7251		5		10 ¹	10 ²
		Routine microbiological testing for pathogens is not recommended. Test for pathogens only when other data indicate potential for contamination.							
		12						ing plan & its/25g*	
		Product	Microorganism	Analytical me- thod a Ca		n	c	#23g m	M
	Low	Fresh-cut	Salmonella	ISO 6579	12	20 ^b	0	0	
	Low	vegetables	E. coli O157:H7	ISO 16654	15	60 ^b	0	0	_
	Low		L. monocytogenes	ISO 11290-1	NA°	5 ^b	0	0	_

National Food & Nutrition RD&TT Strategy

Primary Industries Ministerial Council

National Primary Industries Research, Development and **Extension Framework**

Food and Nutrition Research, Development & Technology **Transfer Strategy**

> **Priority Areas** Food, nutrition and health Food safety Technology transfer Climate/resource constrained Future markets Skills & training

National Food safety Forum

- Mechanisms for identifying current and emerging food safety issues for the sector
- Processes to manage food safety in product and technologies innovation in the food sector
- Identification of food safety priorities impacting market access for Australia
- Collaborative mechanisms to maximise returns on investment in food safety research and development, including the concept of a national and virtual food safety research organisation, and
- The purpose, role, responsibility and administration of the National Food Safety R,D&TT Forum.

Thank you

Food and Nutrition Flagship

Dr Martin Cole
Director | Food and Nutrition Flagship

t +61 2 9490 8465

E Martin.Cole@csiro.au

w www.csiro.au

FOOD AND NUTRITION FLAGSHIP

www.csiro.au

