CASE STUDIES: ACTIVE RESEARCH ON FOOD SAFETY ROBYN MCCONCHIE

Remediation and recovery measures following chicken manure-based soil contamination by *Salmonella enterica subsp. enterica*

Robyn McConchie, Mulatua Hailu, Kim Phan-Thien and Tina Bell

Faculty of Agriculture and Environment

RESEARCH COLLABORATION WITH CPC

- First call for research in 2013 by CPC
- Collaborative project with the US Center for Produce Safety and Australian fruit and vegetable industries
- Topics based on priorities for both countries
- Collaboration with US partner UC Davis
- Jointly funded by CPC and HAL
- Same experiments in two continents
- Reporting end 2015

INTRODUCTION

- > Fresh produce is important part of healthy diet
- ➤ Produce eaten raw e.g. leafy greens are vehicles for transmission of human pathogens
- ➤ Bacterial pathogens continue to be a major contributor
- Salmonella is the most commonly reported pathogen in Australia
- Salmonella is a widespread bacteria with more than a hundred serovars
- ➤ In Australia (2008) *Salmonella* was the second highest cause of notified cases of food-borne illness (Chinivasagam *et al.*, 2012)

INTRODUCTION

Fresh produce can be contaminated at any point in the production chain:

irrigation water

inadequately composted manure

wild or domestic animals

human handling

harvesting equipment

transport containers

wash water

transport vehicles and processing equipment

INTRODUCTION

- Soil amendments with chicken manure (rich in N-P-K content), but associated with Salmonella (Runge et al., 2007)
- ➤ Pre-harvest contamination of vegetables is mainly from the use of fresh/not properly composted manure (Wilkinson, 2011)
- If not composted, stored, applied and managed in an appropriate manner, has potential to create human health risks:
 - **Dust**
 - ➤ Water pollution
 - >Smell

SALMONELLA

- Optimal growth temperature of Salmonella: 35 to 43°C
- Most serovars can grow as low as 7°C
- In general, between 10⁵-10⁶ cells are needed to be consumed to cause illness (Lawley *et al.* 2008)
- Over 99% of human Salmonella spp. infections are caused by S. enterica subsp. enterica (Crum-Cianflone 2008).

CHICKEN MANURE USE IN AUSTRALIA

- In Australia most salad producers do not use manure amendments because of the risk
- Most growers use composted organic amendments that are certified
- Some growers continue to use aged or stockpiled manure and or litter, not necessarily composted
- Poses a risk of soil contamination
- Little research under Australian conditions on survival of Salmonella and Listeria in vegetable farms using chicken manure

RESEARCH AIMS

Pot and Field Trials

- Clarify risk posed by chicken manure amendments to soil used for vegetable production
- Survival and growth of Salmonella Serovars - S.Enteridis, Montevideo, Sophia Cocktail - S. Enteridis, Infantis, Montevideo, Zanzibar, Typhimurium
 - Different soil types sandy & clay loam
 - Temperature 5, 22, 37°C
 - Moisture constant & fluctuating
 - OM plus & minus chicken manure
 - Laboratory & Field conditions

COVER CROPS - ANTIMICROBIAL COMPOUNDS

- Some cover crops/green manures produce biofumigants
- Glucosinolates and phenolics have antimicrobial activity in the soil
- ➤ Glucosinolate (GSL) hydrolysis products exhibit antimicrobial activity (Brader *et al.*, 2006)
- Phenolics 2,4-dihydroxybenzoic and protocatechuic acids have antibacterial activity against human pathogens (Alves *et.al*, 2013)
- ➤ Analysis of antimicrobial activity of:
 - Caliente 199
 - ➤ Fumig8tor
 - **Buckwheat**

Also...SOLARISATION, ODOUR, OUTREACH

- Survival of Salmonella spp. under solarised field conditions
- Listeria monocytogenes survival in field treated with cover crops.
- Literature review on odour
- Outreach to growers

LABORATORY TRIAL

Inoculation

Enrichment

Enumeration

Extraction

OUTCOMES

- The persistence of Australian serovars of *Salmonella* in different soil types under different environmental conditions
- Evaluation of cover crops that contain active antimicrobial components and the conditions under which they kill *Salmonella*
- Determination of field conditions under which cover crops might be used to remediate *Salmonella*-infected soil
- Assess the potential increase of Listeria spp. in cover crop amended soils

FACT SHEETS FOR GROWERS

- Persistence of Australian
 Salmonella serovars in amended and non amended soils
- Potential for risk Listeria sp and L. monocytogenes in amended and non amended soils
- Efficacy of cover crops and solarisation to expedite die-off of Salmonella in contaminated soils
- Best practice re-plant of vegetables in previously contaminated soils
- Best practice guidelines for safe use of chicken manure amendments.

Thank You

