CASE STUDIES: ACTIVE RESEARCH ON FOOD SAFETY DR P J CULLEN

Plasma Chlorine Replacement

PJ Cullen

Never Stand Still

Faculty of Engineering

School of Chemical Engineering

Problem statement

- The fresh-cut industry is heavily dependent on chlorine as a sanitizers to assure the safety of their produce.
- However, in light of concerns about the environmental and health risks associated with the formation of carcinogenic disinfection by-products, there is increasing pressure on the industry to eliminate chlorine from the disinfection process.

STATES OF MATTER

Never Stand Still

School of Chemical Engineering

Cold Plasma

The term cold plasma has been recently used to distinguish the oneatmosphere, near room temperature plasma discharges from other plasmas, operating at hundreds or thousands of degrees

For food processing, a nonthermal plasma (NTP) is specifically an antimicrobial treatment being investigated for application to fruits, vegetables and other foods with fragile surfaces.

Generate Plasma in a Package

Continuous system

Non-thermal

Spore reductions

- Plasma efficiency for inactivation of B. atrophaeus spores
- Spore population 6.3 log₁₀/strip
- Voltage : 50kV
- Gas: Atmospheric air
- Mode of exposure
- Direct (IF)
- Indirect (OF)

Tomato

Tomatoes

Plasma bacteria interaction

E.coli ATCC 25922 Gram Negative (G-)

Control

Treated

Control

P. AeruginosaBiofilm 48 h5 min treatment

DNA damage

DNA damage effect of plasma.

Genomic DNA damage of (a) *E. coli* ATCC 25922; (b) *E. coli* NCTC 12900; (c) *L. monocytogenes* NCTC 11994

16s RNA PCR results of (d) *E. coli* ATCC 25922; (e) *E. coli* NCTC 12900; (f) *L. monocytogenes* NCTC 11994

Lane 1: Non plasma treatment control; 2: 5s directly treated samples; 3: 5s indirectly treated samples; 4: 30s directly treated samples; 5: 30s indirectly treated samples

Quality Studies

Never Stand Still

Faculty of Engineering

School of Chemical Engineering

Respiration studies- Room Air (42 % RH, 21 % O₂)

Post treatment

Post treatment- Raspberry

50kV for 2 min Indirect treatment

Left under room Conditions (24°C/~50% RH)

Pesticide degradation

Acknowledgments

Dr PJ Cullen

Dr Paula Bourke

Dr Vladimir Milosavljevic

Dr James Curtin

Dr Carmen Bueno Ferrer

Dr Daniela Boehm

NN Misra

Shashi Pankaj

Dana Ziuzina

Lu Han

Gill Conway

Caitlin Heslin

James Lalor

Miroslav Gulan

Chaitanya Sarangapani

Diva Almeida

Roseane Cavalcante

Dr Kevin Keener

Acknowledgements

- SAFE-BAG is 3 year R&D project funded by the Seventh Framework Programme of the EC under the "Research for SME Associations" sub-programme.
- grant agreement nº 285820

http://www.safebag-fp7.eu/

